Constructions of MDS-convolutional codes
نویسندگان
چکیده
منابع مشابه
Constructions of MDS-convolutional codes
Maximum-distance separable (MDS) convolutional codes are characterized through the property that the free distance attains the generalized singleton bound. The existence of MDS convolutional codes was established by two of the authors by using methods from algebraic geometry. This correspondence provides an elementary construction of MDS convolutional codes for each rate k/n and each degree δ. ...
متن کاملConstructions of MDS-convolutional codes - Information Theory, IEEE Transactions on
Maximum-distance separable (MDS) convolutional codes are characterized through the property that the free distance attains the generalized Singleton bound. The existence of MDS convolutional codes was established by two of the authors by using methods from algebraic geometry. This correspondence provides an elementary construction of MDS convolutional codes for each rate and each degree . The c...
متن کاملNew constructions of quantum MDS convolutional codes derived from generalized Reed-Solomon codes
Quantum convolutional codes can be used to protect a sequence of qubits of arbitrary length against decoherence. In this paper, we give two new constructions of quantum MDS convolutional codes derived from generalized Reed-Solomon codes and obtain eighteen new classes of quantum MDS convolutional codes. Most of them are new in the sense that the parameters of the codes are different from all th...
متن کاملOn Negacyclic MDS-Convolutional Codes
New families of classical and quantum optimal negacyclic convolutional codes are constructed in this paper. This optimality is in the sense that they attain the classical (quantum) generalized Singleton bound. The constructions presented in this paper are performed algebraically and not by computational search.
متن کاملNew constructions of MDS symbol-pair codes
Motivated by the application of high-density data storage technologies, symbol-pair codes are proposed to protect against pair-errors in symbol-pair channels, whose outputs are overlapping pairs of symbols. The research of symbol-pair codes with large minimum pair-distance is interesting since such codes have the best possible error-correcting capability. A symbol-pair code attaining maximal mi...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: IEEE Transactions on Information Theory
سال: 2001
ISSN: 0018-9448
DOI: 10.1109/18.930938